Investigation of Thermal Stress Variability Due to Microstructure in Thin Aluminum Films

نویسندگان

  • Antoinette M. Maniatty
  • Laura E. Moyer
  • Chia-Ju Yang
چکیده

An X-ray microbeam study and a polycrystal finite element model of a 10 10 m2 section of a 1 m thick polycrystalline aluminum film on a silicon substrate are used to investigate the effect of microstructure on thermal stress variability. In the X-ray microbeam study, the grain orientations and deviatoric elastic strain field are measured at the subgrain level in the film during and after two thermal cycles. A finite element model of the observed grain structure is created and modeled with an elastoviscoplastic crystal constitutive model that incorporates film thickness and grain size effects as well as dislocation entanglement hardening. The experimental and simulation results are compared at both the film and subgrain scales. While the experiment and model agree fairly well at the film level, the experimental results show much greater elastic strain variability than the simulations. In considering the grain size effect, the experiment and model both predict a similar Hall–Petch coefficient, which is consistent with literature data on free standing aluminum thin films. DOI: 10.1115/1.4002212

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deformation Mechanisms in Pure and Alloyed Copper Films

In this work, the evolution of microstructure and the thermo-mechanical behavior of co pper and dilute copper alloy thin films was investigated. 0.3 to 2.0 μm thick film s were deposited by magnetron sputtering under ultra high vacuum conditions onto diffusion-barrier coated silicon substrates and subjected to wafer curvature measurements. Pure copper films annealed in ultra high vacuum exhibit...

متن کامل

Investigation of Structural, Morphological and Optical Properties of Chromium Oxide Thin Films Prepared at Different Annealing Times

Chromium oxide (α-Cr2O3) thin films were prepared using thermal annealing of chromium (Cr)films deposited on quartz substrates by direct current (DC) magnetron sputtering. The annealingprocess of the films was performed for different times of 60, 120,180 and 240 min. The influenceof annealing time on structural, morphological and optical properties of the prepared films wasinvestigated by diffe...

متن کامل

Modeling of Residual Stresses in Thin Metal Films

Residual mechanical stresses introduced during deposition of thin films and coatings have a significant impact on the reliability of electronic devices and structural components. The mechanical stress in thin metal films consists of a thermal component and an intrinsic component due to the evolution of the metal microstructure during film growth. Controlling of the intrinsic stress component ha...

متن کامل

Atomic Simulation of Temperature Effect on the Mechanical Properties of Thin Films

The molecular dynamic technique was used to simulate the nano-indentation test on the thin films of silver, titanium, aluminum and copper which were coated on the silicone substrate. The mechanical properties of the selected thin films were studied in terms of the temperature. The temperature was changed from 193 K to 793 K with an increment of 100 K. To investigate the effect of temperature on...

متن کامل

Investigation of the mechanical properties of various yttria stabilized zirconia based thin films prepared by aqueous tape casting

In this study various yttria doped  zirconia based thin films were prepared by the aqueous tape casting method. The rheological property of the paste was studies. The phase content and microstructure of the samples was investigated by X-ray diffraction and scanning electron microscope, respectively. The mechanical properties of thin films were studied by Vickers microhardness and nanoindentatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010